

LBNF Target Exchange System

Design Progress

Eric Harvey-Fishenden, Chris Densham, Mike Fitton, Joe O'Dell, Peter Loveridge (High Power Targets STFC RAL)

In conjunction with FNAL Target Systems Department

NBI Fermilab 2019

LBNF Neutrino Beamline

Why Do We Need To Exchange Targets?

- Horn & Target configuration for LBNF/DUNE optimised using genetic algorithm (Laura Fields)
- Optimum geometry for physics tends towards 4λ length target (≈2m)
- Achieving a long target pushes fundamental limits (deflection, natural frequency, manufacturing etc.)
 - Must be prepared for targets to fail
- Horns are inherently complex, costly and take a long time to produce
- Target cost ≈1/10th horn cost, and spares can be produced more readily
 - Hence the need for an independently exchangeable target

Current Experience – T2K

- LBNF target exchange is a similar concept but under different constraints
 - Longer target, different exchanger interfaces, more horn bore clearance
 - Experience from T2K will feed into LBNF exchanger design

Conceptual Procedures for Target Exchange

Target Concept Selection

Target exchange impacts were a key consideration in the LBNF target concept selection:

Target exchange was considered for each concept including:

- Procedures required
- Risk associated with target exchange
- Time taken to exchange target system
- Impacts on the work cell requirements

Target Concept Selection

Option	No. Operations	Target Handling Time (Days)
1) 2.2m Supported Target	41	22
2) Double Target	35	14
3) Cantilever Target	18	5

John Back's assessment calculates an extra 13-19 days running per year with a single cantilever target to achieve same theoretical physics performance as a 2.2m supported target

A single cantilever target was selected as providing the optimum performance:

- Small hit in instantaneous physics versus a longer, downstream supported target, but;
- Instantaneous physics hit likely to be made up in integrated performance due to a more robust design
 - Simpler target is less likely to fail in operation
 - Takes less time to replace outside of a planned maintenance schedule

LBNF Work Cell During Target Exchange

Horn module supported from the top of the work cell

Target exchanger located on lift table on work cell floor

Persons using through-wall manipulators are approximately 4m away from the front face of the horn

T2K Target Exchange System

T2K Target Exchanger

Some Differences for LBNF

- Length of target exchanger
 - T2K Target 0.9m (1.7m exchanger)
 - LBNF Target 1.5m+ (2.8m exchanger)
- Docking interface
 - T2K relies on perpendicularity of several interfaces
 - Limited "real estate" on LBNF
 - LBNF supports are not a robust datum for alignment
 - Potential for large moments to be applied to horn A

→ "Hard" mechanical docking/alignment likely not possible for LBNF

- Cross rail system
 - Moving target from "x" rail to "z" rail is fiddly and time consuming
- Passive rails
 - Range of motion required to push or pull target carriers along rails would be excessive for LBNF

→ Use motorised linear rails for LBNF target exchanger

LBNF Target Exchange System Concept

- Dock exchanger @ target supports to accurately fix position at front end of exchanger
- Allow some rotation about that position to align the exchanger axis to the horn bore axis
 - Alignment diagnostics may be challenging investigating triple beam interferometers/autocollimators for laser alignment
 - Sensitivity/accuracy of these systems may be no better than a "hard" mechanical alignment but the risk of damaging other systems is reduced

LBNF Target Exchange System Requirements

- Horn module suspended from the top of the work cell
- Exchanger located on lift table on work cell floor
 - Relative positions not well defined
- Horn tilted at approximately 6° from horizontal
- Exchanger must have sufficient compliance to allow location pins at front end to align
 - Compliance must be well controlled such that the exchanger is not unstable
- Driven jacks/linear stages must allow fine adjustment to align the exchanger slides to the horn bore
- Target carrier must have some small in-plane compliance to allow target to locate on its alignment pins, but must not allow angular rotation
 - Target must clear horn bore without touching

Potential Layout

Challenges:

- Stiffness/mass trade-off
- Minimising complexity

Docking Interface Ideas

- Spherical stop to fix separation between exchanger and target supports but also permit small rotational adjustments after docking
- Still need a method of securing the exchanger to the target supports

Layout of pins/holes may change - Prototyping of interface will be necessary

Summary

- The LBNF secondary beamline will use a remotely exchangeable target
- The procedures for exchanging targets have been developed and documented
- The concept for an LBNF target exchanger is being developed into preliminary design ideas
 - Plenty of R&D still to be done
- Lessons learnt from the target exchange system for T2K are being implemented in to the LBNF design
- Based on T2K experience we expect to go through a few iterations before we have an exchanger suitable for "on-line" target exchange
 - Current schedules show that this will be possible

UK Research and Innovation

Backup - Schedule

- RAL Schedule currently has exchanger testing during summer 2024
- Approx. 6 months allocated to redesign prior to delivery to FNAL
- Feb 2025 earliest possible date for actual integration and exchange testing with Horn
 A on test stand at FNAL
 - Assuming this schedule is correct, there are several years available to iterate and potentially improve exchanger prior to an "on-line" target exchange
 - This will also allow scope for FNAL RH technicians to develop and become familiar with procedures

Backup - Exchanger Table Supports

Challenges:

- Flexibility/stability compromise
- Maintaining simplicity

